We study the integration problem on Hilbert spaces of (multivariate) periodic functions. The standard technique to prove lower bounds for the error of quadrature rules uses bump functions and the pigeon hole principle. Recently, several new lower bounds have been obtained using a different technique which exploits the Hilbert space structure and a variant of the Schur product theorem. The purpose of this paper is to (a) survey the new proof technique, (b) show that it is indeed superior to the bump-function technique, and (c) sharpen and extend the results from the previous papers.
翻译:我们研究了Hilbert空间(多变量)周期函数的整合问题。证明二次规则错误的下限的标准技术使用撞击函数和鸽洞原则。最近,利用一种不同的技术利用了Hilbert空间结构和Schur产品定理的变体,获得了几个新的下限。本文的目的是(a) 调查新的验证技术,(b) 表明它确实优于碰撞功能技术,(c) 改进和扩展以前论文的结果。