This paper proposed a storing approach for trie structures, called Coordinate Hash Trie. For a trie with $n$ nodes and an alphabet with size $m$, the execution time of finding, inserting and deleting a child node, is $O(1)$ for the average case, $O(m)$ for the worst case. The space used by this approach is $O(n)$, unrelated to $m$. The constant of space consumption is predictable, with no need for reallocation or resizing.
翻译:本文提出了三重结构的储存办法,称为“协调哈斯三重”:对于以美元为节点的三角和以百万美元为单位的字母,查找、插入和删除儿童节点的执行时间平均为1美元,最坏情况下为1美元,这一办法使用的空间为0美元(n)美元,与百万美元无关。空间消费的常数是可以预测的,不需要重新分配或调整。