A $0,1$ matrix is said to be regular if all of its rows and columns have the same number of ones. We prove that for infinitely many integers $k$, there exists a square regular $0,1$ matrix with binary rank $k$, such that the Boolean rank of its complement is $k^{\widetilde{\Omega}(\log k)}$. Equivalently, the ones in the matrix can be partitioned into $k$ combinatorial rectangles, whereas the number of rectangles needed for any cover of its zeros is $k^{\widetilde{\Omega}(\log k)}$. This settles, in a strong form, a question of Pullman (Linear Algebra Appl., 1988) and a conjecture of Hefner, Henson, Lundgren, and Maybee (Congr. Numer., 1990). The result can be viewed as a regular analogue of a recent result of Balodis, Ben-David, G\"{o}\"{o}s, Jain, and Kothari (FOCS, 2021), motivated by the clique vs. independent set problem in communication complexity and by the (disproved) Alon-Saks-Seymour conjecture in graph theory. As an application of the produced regular matrices, we obtain regular counterexamples to the Alon-Saks-Seymour conjecture and prove that for infinitely many integers $k$, there exists a regular graph with biclique partition number $k$ and chromatic number $k^{\widetilde{\Omega}(\log k)}$.


翻译:0. 1美元的矩阵据说是正常的, 如果它的所有行和列都有相同数量。 我们证明, 对于无限多的整数 $k$, 存在一个平方正正正数 0. 1美元的矩阵, 其二元值为 $k, 其补充的布林级别为 $k ⁇ blobyltilde {Omega} (logkk) 。 等量地, 矩阵中的人可以分割成 $k$ 的组合矩形, 而对于任何零的封面需要的矩形数是 $klobaltilde {Omega} (logkkk) $k 。 这解决了以强烈的形式, Pullman 的问题( liearl Algebra Appl., 1988) 和 Hefner, Henson, Lundgren, 和 ebe (Congrum. Num., 1990) 。 其结果可以被看成一个常规 和 KOS 的直径 的直径直径直径 和直径直径解的直径直径直径数( ) 和直径 的直径 和直径的直径的直径直径直径的直径 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
25+阅读 · 2021年4月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
25+阅读 · 2021年4月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员