Deep learning approaches show unprecedented results for speckle reduction in SAR amplitude images. The wide availability of multi-temporal stacks of SAR images can improve even further the quality of denoising. In this paper, we propose a flexible yet efficient way to integrate temporal information into a deep neural network for speckle suppression. Archives provide access to long time-series of SAR images, from which multi-temporal averages can be computed with virtually no remaining speckle fluctuations. The proposed method combines this multi-temporal average and the image at a given date in the form of a ratio image and uses a state-of-the-art neural network to remove the speckle in this ratio image. This simple strategy is shown to offer a noticeable improvement compared to filtering the original image without knowledge of the multi-temporal average.
翻译:深层学习方法显示了合成孔径雷达振幅图像的分光减缩史前所未有的结果。 多时数合成孔径雷达图像的可广泛获取性可以进一步提高拆离质量。 在本文中,我们提出了一个灵活而有效的方法,将时间信息整合到深神经网络中,以抑制分光。档案提供了长期的合成孔径雷达图像序列,从中可以计算出多时平均数,而几乎不再留下分光波动。拟议方法将这一多时数平均值和特定日期的图像以比例图像的形式结合起来,并使用最先进的神经网络去除该比例图像中的分光线。这一简单战略表明,与在没有了解多时数平均值的情况下过滤原始图像相比,可以带来显著的改进。