Deep learning approaches show unprecedented results for speckle reduction in SAR amplitude images. The wide availability of multi-temporal stacks of SAR images can improve even further the quality of denoising. In this paper, we propose a flexible yet efficient way to integrate temporal information into a deep neural network for speckle suppression. Archives provide access to long time-series of SAR images, from which multi-temporal averages can be computed with virtually no remaining speckle fluctuations. The proposed method combines this multi-temporal average and the image at a given date in the form of a ratio image and uses a state-of-the-art neural network to remove the speckle in this ratio image. This simple strategy is shown to offer a noticeable improvement compared to filtering the original image without knowledge of the multi-temporal average.


翻译:深层学习方法显示了合成孔径雷达振幅图像的分光减缩史前所未有的结果。 多时数合成孔径雷达图像的可广泛获取性可以进一步提高拆离质量。 在本文中,我们提出了一个灵活而有效的方法,将时间信息整合到深神经网络中,以抑制分光。档案提供了长期的合成孔径雷达图像序列,从中可以计算出多时平均数,而几乎不再留下分光波动。拟议方法将这一多时数平均值和特定日期的图像以比例图像的形式结合起来,并使用最先进的神经网络去除该比例图像中的分光线。这一简单战略表明,与在没有了解多时数平均值的情况下过滤原始图像相比,可以带来显著的改进。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
50+阅读 · 2020年12月14日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Arxiv
8+阅读 · 2018年11月27日
Image Captioning based on Deep Reinforcement Learning
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Top
微信扫码咨询专知VIP会员