We consider the closeness testing problem for discrete distributions. The goal is to distinguish whether two samples are drawn from the same unspecified distribution, or whether their respective distributions are separated in $L_1$-norm. In this paper, we focus on adapting the rate to the shape of the underlying distributions, i.e. we consider \textit{a local minimax setting}. We provide, to the best of our knowledge, the first local minimax rate for the separation distance up to logarithmic factors, together with a test that achieves it. In view of the rate, closeness testing turns out to be substantially harder than the related one-sample testing problem over a wide range of cases.


翻译:我们考虑离散分布物的近距离测试问题。 目标是区分两个样本是来自同一未指明的分布物,还是它们各自的分布物以1美元- 诺尔值分隔开来。 在本文中,我们侧重于根据基本分布物的形状调整速度, 即我们考虑\ textit{ a local minimax setting} 。 我们根据我们的知识, 提供了离散距离至对数系数的第一个本地微鼠标率, 并同时进行一项达到该比率的测试。 鉴于这一比率, 近距离测试结果比一系列案例的一模数测试问题要困难得多 。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月4日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员