This paper studies the minimax rate of nonparametric conditional density estimation under a weighted absolute value loss function in a multivariate setting. We first demonstrate that conditional density estimation is impossible if one only requires that $p_{X|Z}$ is smooth in $x$ for all values of $z$. This motivates us to consider a sub-class of absolutely continuous distributions, restricting the conditional density $p_{X|Z}(x|z)$ to not only be H\"older smooth in $x$, but also be total variation smooth in $z$. We propose a corresponding kernel-based estimator and prove that it achieves the minimax rate. We give some simple examples of densities satisfying our assumptions which imply that our results are not vacuous. Finally, we propose an estimator which achieves the minimax optimal rate adaptively, i.e., without the need to know the smoothness parameter values in advance. Crucially, both of our estimators (the adaptive and non-adaptive ones) impose no assumptions on the marginal density $p_Z$, and are not obtained as a ratio between two kernel smoothing estimators which may sound like a go to approach in this problem.
翻译:本文研究在加权绝对值损失函数下在多变量环境下非参数性有条件密度估计的最小速率, 在加权绝对值损失函数下, 多变量环境下, 我们首先表明, 有条件密度估计是不可能的。 我们首先证明, 如果只要求美元xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx