We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.


翻译:我们显示,对于测试问题, 如果矩阵$A\ in F ⁇ n\timen n} 以美元为单位, 或者需要修改一个美元=epslon$的折叠值, 以美元为单位, 或需要修改一个美元=epslon$的折叠值, 则存在一个非调整查询算法, 使美元为全局{O}( d ⁇ 2/\\\\epsilon} 查询。 我们的算法为任何字段工作 $F$。 这比前一个美元( d ⁇ 2/\\\ eptopsilon2) 的折叠值( SOD’2), 绕过一个美元( dD) 美元( dDD) 的折叠叠叠叠, 如果需要算法的折叠成值为美元=xxxxxxxl) 的折叠成, 我们的折成的折成数为不易变数。

3
下载
关闭预览

相关内容

【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
3+阅读 · 2018年10月5日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员