We consider high-dimensional multivariate linear regression models, where the joint distribution of covariates and response variables is a multivariate normal distribution with a bandable covariance matrix. The main goal of this paper is to estimate the regression coefficient matrix, which is a function of the bandable covariance matrix. Although the tapering estimator of covariance has the minimax optimal convergence rate for the class of bandable covariances, we show that it has a sub-optimal convergence rate for the regression coefficient; that is, a minimax estimator for the class of bandable covariances may not be a minimax estimator for its functionals. We propose the blockwise tapering estimator of the regression coefficient, which has the minimax optimal convergence rate for the regression coefficient under the bandable covariance assumption. We also propose a Bayesian procedure called the blockwise tapering post-processed posterior of the regression coefficient and show that the proposed Bayesian procedure has the minimax optimal convergence rate for the regression coefficient under the bandable covariance assumption. We show that the proposed methods outperform the existing methods via numerical studies.
翻译:我们考虑的是高维多变量线性回归模型, 共变和响应变量的共同分布是带有带宽共变矩阵的多变量正常分布。 本文的主要目的是估算回归系数矩阵, 这是可带宽共变矩阵的函数。 虽然共变的缩放估计值具有可带宽共变类别的最低最大最佳趋同率, 我们还提议了一种巴伊西亚程序, 称为回归系数的后处理后后后后附后加和率, 表明拟议的巴伊西亚程序在可带宽共变系数的假设下, 可能不是其功能的缩放估计值缩放估计值。 我们提出回归系数的缩放估计值缩放估计值, 其缩放估计值具有可带宽共差假设下回归系数的缩放最佳趋同率。 我们还提议了一种巴伊斯程序, 称为折叠加后处理后后后后加后加回归系数的阻联结率, 并表明拟议的巴伊西亚程序在可带余变量假设下, 显示拟议的回差系数的最小最大最佳趋同率。