This paper proposes a distributed algorithm for a network of agents to solve an optimization problem with separable objective function and locally coupled constraints. Our strategy is based on reformulating the original constrained problem as the unconstrained optimization of a smooth (continuously differentiable) exact penalty function. Computing the gradient of this penalty function in a distributed way is challenging even under the separability assumptions on the original optimization problem. Our technical approach shows that the distributed computation problem for the gradient can be formulated as a system of linear algebraic equations defined by separable problem data. To solve it, we design an exponentially fast, input-to-state stable distributed algorithm that does not require the individual agent matrices to be invertible. We employ this strategy to compute the gradient of the penalty function at the current network state. Our distributed algorithmic solver for the original constrained optimization problem interconnects this estimation with the prescription of having the agents follow the resulting direction. Numerical simulations illustrate the convergence and robustness properties of the proposed algorithm.


翻译:本文为一个代理商网络提出一个分布式算法, 以解决优化问题, 使用分解客观功能和本地结合的制约。 我们的战略是重新定义最初的受限问题, 因为它是平滑( 连续的) 准确的罚款功能的不受限制的优化。 将这一罚款函数的梯度以分布式方式计算, 即使根据原始优化问题的分解假设, 也是很困难的。 我们的技术方法显示, 梯度的分布式计算问题可以形成一个线性代数方程系统, 由分解的问题数据定义。 为了解决这个问题, 我们设计了一个指数化的快速、 输入到州的稳定分布式算法, 不需要单个代理商矩阵不可忽略。 我们使用这个策略来计算当前网络状态下罚款函数的梯度。 我们分配的原始受限优化问题的算法求解器将这一估计与代理商遵循所产生方向的处方相连接。 数字模拟显示了拟议算法的趋同性和坚固性。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【2020新书】单机搞AI、数据科学和物联网,323页pdf
专知会员服务
51+阅读 · 2020年7月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
5+阅读 · 2019年6月5日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【2020新书】单机搞AI、数据科学和物联网,323页pdf
专知会员服务
51+阅读 · 2020年7月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员