We present a method to map an unknown 3D freeform surface using only sparse measurements while the end-effector of a robotic manipulator moves along the surface. The geometry is locally approximated by a plane, which is defined by measured points on the surface. The method relies on linear Kalman filters, estimating the height of each point on a 2D grid. Therefore, the approximation covariance for each grid point is determined by the projected distance to the measured points' positions. We propose different update strategies for the grid points, where the approximation is valid to consider the locality of the planar approximation. We experimentally validate the approach by tracking the surface with a robotic manipulator. Three laser distance sensors mounted on the end-effector continuously measure points on the surface during the motion. These points determine the approximation plane, which updates the mapping. It is shown that the surface geometry can be mapped reasonably accurate with a mean absolute error below 1 mm. The mapping error mainly depends on the size of the approximation area and the curvature of the surface.
翻译:我们提出了一个绘制未知的 3D 自由形表面的方法, 仅使用稀疏的测量方法, 而机器人操纵器的终端效应则沿着表面移动。 几何由平面近似于局部, 由表面测量点决定。 该方法依赖于线性 Kalman 过滤器, 估计2D 网格上每个点的高度。 因此, 每个网格点的近似共变差由测得点与测得点位置的预测距离来决定。 我们为网格点提出了不同的更新策略, 即近似可以有效考虑平面近似的位置。 我们用机械操纵器对地表进行跟踪, 实验验证了该方法。 在运动期间, 安装在末效或连续测量点上的三个激光距离传感器。 这些点决定了近似平面的平面, 从而更新了绘图。 这表明, 地表几何测量方法可以用低于1毫米的绝对误差来进行合理精确的绘图。 绘图错误主要取决于近差面积大小和地表的曲度 。