Artificial Neural Networks (ANNs) are widely used for approximating complex functions. The process that is usually followed to define the most appropriate architecture for an ANN given a specific function is mostly empirical. Once this architecture has been defined, weights are usually optimized according to the error function. On the other hand, we observe that ANNs can be represented as graphs and their topological 'fingerprints' can be obtained using Persistent Homology (PH). In this paper, we describe a proposal focused on designing more principled architecture search procedures. To do this, different architectures for solving problems related to a heterogeneous set of datasets have been analyzed. The results of the evaluation corroborate that PH effectively characterizes the ANN invariants: when ANN density (layers and neurons) or sample feeding order is the only difference, PH topological invariants appear; in the opposite direction in different sub-problems (i.e. different labels), PH varies. This approach based on topological analysis helps towards the goal of designing more principled architecture search procedures and having a better understanding of ANNs.
翻译:人工神经网络(ANNs) 被广泛用于相似的复杂功能。 通常用来定义适合ANN特定功能的最适当结构的过程大多是经验性的。 一旦该结构被定义, 重量通常根据错误函数优化。 另一方面, 我们观察到, ANN 可以用图解表示, 其地形上的“ 指印” 可以用持久性有机污染物( PH) 获得。 在本文中, 我们描述一个提案, 重点是设计更加有原则的结构搜索程序。 为了做到这一点, 已经分析了用于解决与一组混杂数据集有关的问题的不同结构。 评估结果证实, PH 有效地体现了ANN 的特性: 当 ANN 密度( 层和神经元) 或样本喂养顺序是唯一的区别时, PH 的表情性变量; 在不同子问题( e. 不同标签) 的相反方向上, PH 。 这种方法基于地形分析, 有助于实现设计更加有原则的结构搜索程序和更好地了解ANNs 的目标。