Graph-structured data are ubiquitous. However, graphs encode diverse types of information and thus play different roles in data representation. In this paper, we distinguish the \textit{representational} and the \textit{correlational} roles played by the graphs in node-level prediction tasks, and we investigate how Graph Neural Network (GNN) models can effectively leverage both types of information. Conceptually, the representational information provides guidance for the model to construct better node features; while the correlational information indicates the correlation between node outcomes conditional on node features. Through a simulation study, we find that many popular GNN models are incapable of effectively utilizing the correlational information. By leveraging the idea of the copula, a principled way to describe the dependence among multivariate random variables, we offer a general solution. The proposed Copula Graph Neural Network (CopulaGNN) can take a wide range of GNN models as base models and utilize both representational and correlational information stored in the graphs. Experimental results on two types of regression tasks verify the effectiveness of the proposed method.
翻译:图表结构数据是无处不在的。 然而, 图表将各种类型的信息编码成图表, 从而在数据表达中扮演不同的角色。 在本文中, 我们区分了图表在节点级预测任务中扮演的\ textit{ 代表性} 和\ textit{ 关系} 角色, 我们调查了图形神经网络模型如何有效地利用这两种类型的信息。 从概念上看, 代表信息为模型提供了构建更好的节点特征的指导; 而相关性信息则表明节点结果与节点特征的相互关系。 通过模拟研究, 我们发现许多广受欢迎的GNN模型无法有效地利用相关信息。 通过利用Copula的设想, 描述多变随机变量之间的依赖性, 我们提供了一个通用解决方案。 拟议的 Copula 图形神经网络( CopulaGNNN) 可以将广泛的GNN模型作为基础模型, 并使用图表中存储的表态和相关性信息。 在两种回归任务类型上, 实验结果可以验证拟议方法的有效性 。