题目: Composition-Based Multi-Relational Graph Convolutional Networks
摘要: 图卷积网络(GCNs)最近被证明在对图结构数据建模方面是非常成功的。然而,主要的重点是处理简单的无向图。多关系图是一种更为普遍和流行的图,其中每条边都有一个与之相关的标签和方向。现有的大多数处理此类图的方法都存在参数过多的问题,并且仅限于学习节点的表示形式。在本文中,我们提出了一种新的图卷积框架COMP-GCN,它将节点和关系共同嵌入到一个关系图中。COMP-GCN利用知识图谱嵌入技术中的各种实体关系组合操作,并根据关系的数量进行扩展。它还概括了几种现有的多关系GCN方法。我们评估了我们提出的方法在多个任务,如节点分类,链接预测,和图分类,并取得了明显的结果。