Koopman decomposition is a non-linear generalization of eigen-decomposition, and is being increasingly utilized in the analysis of spatio-temporal dynamics. Well-known techniques such as the dynamic mode decomposition (DMD) and its linear variants provide approximations to the Koopman operator, and have been applied extensively in many fluid dynamic problems. Despite being endowed with a richer dictionary of nonlinear observables, nonlinear variants of the DMD, such as extended/kernel dynamic mode decomposition (EDMD/KDMD) are seldom applied to large-scale problems primarily due to the difficulty of discerning the Koopman invariant subspace from thousands of resulting Koopman eigenmodes. To address this issue, we propose a framework based on multi-task feature learning to extract the most informative Koopman invariant subspace by removing redundant and spurious Koopman triplets. In particular, we develop a pruning procedure that penalizes departure from linear evolution. These algorithms can be viewed as sparsity promoting extensions of EDMD/KDMD. Further, we extend KDMD to a continuous-time setting and show a relationship between the present algorithm, sparsity-promoting DMD, and an empirical criterion from the viewpoint of non-convex optimization. The effectiveness of our algorithm is demonstrated on examples ranging from simple dynamical systems to two-dimensional cylinder wake flows at different Reynolds numbers and a three-dimensional turbulent ship air-wake flow. The latter two problems are designed such that very strong nonlinear transients are present, thus requiring an accurate approximation of the Koopman operator. Underlying physical mechanisms are analyzed, with an emphasis on characterizing transient dynamics. The results are compared to existing theoretical expositions and numerical approximations.


翻译:Koopman 分解法是一种非直线性直径分解法, 并正越来越多地用于分析时空动态。 众所周知的技术, 如动态模式分解( DMD) 及其线性变体, 向Koopman 操作员提供了近似, 并被广泛应用于许多流动动态问题 。 尽管DMD 具有较丰富的非线性可观测词字典, 非线性变体, 例如伸缩/ 内螺旋性变异机制( EDMD/ KDMD) 很少用于大规模问题, 主要是因为难以从成品的 Koopman 分解( DMD) 及其线性变异空间中辨出大量变异异性。 特别是, 我们开发了一个从直线性变异性流( EDMD/ KDMD) 流(ED) 流的分解程序。 这些算法可以被看成是快速的性能性, 需要当前双轨变异性变异性变异性变变变异性变异性, 。 后变变变变变变变变变的机的机 。 我们的系统正在 向下, 变现了一种不断变现的 变式 变式 变现的 变式的 变式 变式 变式 变式 变式, 变式 变式 变现的 变式 变式 变式 变的 变式 变式 变式 变式

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
专知会员服务
82+阅读 · 2020年5月16日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learned convex regularizers for inverse problems
Arxiv
0+阅读 · 2021年3月1日
Arxiv
0+阅读 · 2021年2月27日
Arxiv
0+阅读 · 2021年2月26日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员