Modern day computing increasingly relies on specialization to satiate growing performance and efficiency requirements. A core challenge in designing such specialized hardware architectures is how to perform mapping space search, i.e., search for an optimal mapping from algorithm to hardware. Prior work shows that choosing an inefficient mapping can lead to multiplicative-factor efficiency overheads. Additionally, the search space is not only large but also non-convex and non-smooth, precluding advanced search techniques. As a result, previous works are forced to implement mapping space search using expert choices or sub-optimal search heuristics. This work proposes Mind Mappings, a novel gradient-based search method for algorithm-accelerator mapping space search. The key idea is to derive a smooth, differentiable approximation to the otherwise non-smooth, non-convex search space. With a smooth, differentiable approximation, we can leverage efficient gradient-based search algorithms to find high-quality mappings. We extensively compare Mind Mappings to black-box optimization schemes used in prior work. When tasked to find mappings for two important workloads (CNN and MTTKRP), the proposed search finds mappings that achieve an average $1.40\times$, $1.76\times$, and $1.29\times$ (when run for a fixed number of steps) and $3.16\times$, $4.19\times$, and $2.90\times$ (when run for a fixed amount of time) better energy-delay product (EDP) relative to Simulated Annealing, Genetic Algorithms and Reinforcement Learning, respectively. Meanwhile, Mind Mappings returns mappings with only $5.32\times$ higher EDP than a possibly unachievable theoretical lower-bound, indicating proximity to the global optima.


翻译:现代日计算日益依赖专业化来满足不断增长的绩效和效率要求。设计这类专门硬件结构的核心挑战是如何进行空间绘图搜索,即从算法到硬件的搜索。先前的工作表明,选择效率低的映射可以导致多重性因素效率管理。此外,搜索空间不仅大,而且非混凝土和非混凝土,从而排除了先进的搜索技术。因此,以往的工作被迫使用专家选择或亚最佳搜索超模来进行空间搜索。这项工作提出了“思维映射”,这是用于算法-加速器空间搜索的新型梯度搜索方法。关键的想法是,选择效率低的映射可以导致多重因素-效率管理。此外,我们还可以利用高效的基于梯度的搜索算法来找到高质量的映射。我们把“思维映射”比先前工作中使用的黑格优化计划(N90美元和MTERCFM)要广泛比较。当为两个重要的工作量(CN-90美元和亚梯-39美元的相对值)进行快速的绘图时,为平均40美元的固定时间值(美元)进行搜索,一个固定值的固定值和最低值(美元),一个固定时间值的搜索,一个固定值为40美元的值的值的值的算值的算值为40值的值的值的算算,然后表示。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Low Rank Approximation at Sublinear Cost
Arxiv
0+阅读 · 2021年4月22日
Arxiv
0+阅读 · 2021年4月22日
Arxiv
8+阅读 · 2021年1月28日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
3+阅读 · 2018年6月24日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员