Koopman operator theory has served as the basis to extract dynamics for nonlinear system modeling and control across settings, including non-holonomic mobile robot control. Despite its widespread use, research on safety guarantees for systems the dynamics of which are extracted via the Koopman operator, has started receiving attention only recently. In this paper, we propose a way to quantify the prediction error because of noisy measurements when the Koopman operator is approximated via Extended Dynamic Mode Decomposition. We further develop an enhanced robot control strategy to endow robustness to a class of data-driven (robotic) systems that rely on Koopman operator theory, and we show how part of the strategy can happen offline in an effort to make our algorithm capable of real-time implementation. We perform a parametric study to evaluate the (theoretical) performance of the algorithm using a Van der Pol oscillator, and conduct a series of simulated experiments in Gazebo using a non-holonomic wheeled robot.
翻译:Koopman 操作员 理论 库普曼 操作员 理论 是 提取非线性系统建模和跨环境控制动态的基础, 包括非光线性移动机器人控制 。 尽管使用范围很广, 但其动态通过库普曼操作员提取的系统安全保障研究最近才开始引起注意 。 在本文件中, 当库普曼操作员通过扩展动态模式分解接近于超声性能测量时, 我们建议了一种方法来量化预测错误 。 我们还进一步开发了一个强化的机器人控制战略, 以让依赖库普曼操作员理论的一类数据驱动( robotic) 系统保持稳健性, 我们展示了战略的哪些部分可以在离线下运行, 以使我们的算法能够实时实施 。 我们进行了一项参数研究, 以使用范极电极振动振动振动振荡器评估算法的( 理论) 性能, 并使用非光学轮机器人在加泽博进行一系列模拟实验 。