The Julia library TSSOS aims at helping polynomial optimizers to solve large-scale problems with sparse input data. The underlying algorithmic framework is based on exploiting correlative and term sparsity to obtain a new moment-SOS hierarchy involving potentially much smaller positive semidefinite matrices. TSSOS can be applied to numerous problems ranging from power networks to eigenvalue and trace optimization of noncommutative polynomials, involving up to tens of thousands of variables and constraints.
翻译:Julia图书馆的TSSOS旨在帮助多元优化器解决输入数据稀少的大规模问题,其基本算法框架的基础是利用相关和术语宽度,以获得一个新的瞬间SOS等级,其中可能涉及更小得多的正半确定基质。 TSSOS可以适用于从电力网络到非混合多元体的基因价值和微量优化等诸多问题,其中涉及多达数万个变量和制约因素。