Solving complex optimization problems in engineering and the physical sciences requires repetitive computation of multi-dimensional function derivatives. Commonly, this requires computationally-demanding numerical differentiation such as perturbation techniques, which ultimately limits the use for time-sensitive applications. In particular, in nonlinear inverse problems Gauss-Newton methods are used that require iterative updates to be computed from the Jacobian. Computationally more efficient alternatives are Quasi-Newton methods, where the repeated computation of the Jacobian is replaced by an approximate update. Here we present a highly efficient data-driven Quasi-Newton method applicable to nonlinear inverse problems. We achieve this, by using the singular value decomposition and learning a mapping from model outputs to the singular values to compute the updated Jacobian. This enables a speed-up expected of Quasi-Newton methods without accumulating roundoff errors, enabling time-critical applications and allowing for flexible incorporation of prior knowledge necessary to solve ill-posed problems. We present results for the highly non-linear inverse problem of electrical impedance tomography with experimental data.
翻译:解决工程和物理科学中复杂的优化问题需要重复计算多维函数衍生物。 通常, 这需要计算要求数字差异, 如扰动技术, 最终限制对时间敏感应用的使用。 特别是在非线性反问题 Gaus- Newton 方法中, 需要从 Jacobian 计算迭代更新。 计算效率更高的替代品是 Quasi- Newton 方法, Jacobian 的重复计算被近似更新所取代。 我们在这里展示了适用于非线性反问题的高效数据驱动的 Quasi- Newton 方法。 我们通过使用单值拆解和从模型输出到单值的绘图来计算更新的 Jacobian 。 这使得在不积累圆差的情况下, 快速预期 Quasi- Newton 方法, 使得时间紧迫的应用程序能够灵活地整合解决错误问题所需的先前知识。 我们在这里展示了用于非线性电阻断与实验数据之间的问题的结果 。