Solving complex optimization problems in engineering and the physical sciences requires repetitive computation of multi-dimensional function derivatives. Commonly, this requires computationally-demanding numerical differentiation such as perturbation techniques, which ultimately limits the use for time-sensitive applications. In particular, in nonlinear inverse problems Gauss-Newton methods are used that require iterative updates to be computed from the Jacobian. Computationally more efficient alternatives are Quasi-Newton methods, where the repeated computation of the Jacobian is replaced by an approximate update. Here we present a highly efficient data-driven Quasi-Newton method applicable to nonlinear inverse problems. We achieve this, by using the singular value decomposition and learning a mapping from model outputs to the singular values to compute the updated Jacobian. This enables a speed-up expected of Quasi-Newton methods without accumulating roundoff errors, enabling time-critical applications and allowing for flexible incorporation of prior knowledge necessary to solve ill-posed problems. We present results for the highly non-linear inverse problem of electrical impedance tomography with experimental data.


翻译:解决工程和物理科学中复杂的优化问题需要重复计算多维函数衍生物。 通常, 这需要计算要求数字差异, 如扰动技术, 最终限制对时间敏感应用的使用。 特别是在非线性反问题 Gaus- Newton 方法中, 需要从 Jacobian 计算迭代更新。 计算效率更高的替代品是 Quasi- Newton 方法, Jacobian 的重复计算被近似更新所取代。 我们在这里展示了适用于非线性反问题的高效数据驱动的 Quasi- Newton 方法。 我们通过使用单值拆解和从模型输出到单值的绘图来计算更新的 Jacobian 。 这使得在不积累圆差的情况下, 快速预期 Quasi- Newton 方法, 使得时间紧迫的应用程序能够灵活地整合解决错误问题所需的先前知识。 我们在这里展示了用于非线性电阻断与实验数据之间的问题的结果 。

0
下载
关闭预览

相关内容

拟牛顿法(Quasi-Newton Methods)是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W. C. Davidon所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。
专知会员服务
25+阅读 · 2021年4月2日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员