In many real-world problems, collecting a large number of labeled samples is infeasible. Few-shot learning (FSL) is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples. FSL tasks have been predominantly solved by leveraging the ideas from gradient-based meta-learning and metric learning approaches. However, recent works have demonstrated the significance of powerful feature representations with a simple embedding network that can outperform existing sophisticated FSL algorithms. In this work, we build on this insight and propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations. Equivariance or invariance has been employed standalone in the previous works; however, to the best of our knowledge, they have not been used jointly. Simultaneous optimization for both of these contrasting objectives allows the model to jointly learn features that are not only independent of the input transformation but also the features that encode the structure of geometric transformations. These complementary sets of features help generalize well to novel classes with only a few data samples. We achieve additional improvements by incorporating a novel self-supervised distillation objective. Our extensive experimentation shows that even without knowledge distillation our proposed method can outperform current state-of-the-art FSL methods on five popular benchmark datasets.


翻译:在许多现实世界问题中,收集大量标签样本是行不通的。少见的学习(FSL)是解决这一问题的主要方法,其目标是在数量有限的样本中迅速适应新型类别。FSL的任务主要通过利用基于梯度的元学习和计量学习方法的理念来解决。然而,最近的工作表明,通过简单的嵌入网络来进行强大的特征表现的重要性,这些特征表现可以超越现有的高端FSL算法。在这项工作中,我们利用了这种洞察力,并提出了一个创新的培训机制,同时对几何转换的一套总体系统实施不均和不均。在以往的工作中,利用了不均匀或不均匀的类别;然而,根据我们的知识,这些任务没有被联合使用。这两个对比目标的同步优化使模型能够共同学习不仅独立于投入转换的特征,而且能够将民众变异性结构编码。这些互补的特征组合有助于将新颖的班类概括化,而只有少数个目标变异的版本;在以往的工作中,我们利用了独立或变异性,但是,就我们的知识而言,它们没有被联合使用过。我们所提出的五种模型模型,我们的新式的模型可以实现新的模型。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
专知会员服务
53+阅读 · 2019年12月22日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年4月19日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
11+阅读 · 2018年7月8日
Top
微信扫码咨询专知VIP会员