We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity sets, which can be generalized to sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization methods. We prove a theorem that generalizes the classical duality in the mathematical problem of moments. Enabled by this theorem, we reformulate the maximization with respect to measures in DRO into the dual program that searches for RKHS functions. Using universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations such as polynomial losses and knowledge of the Lipschitz constant. We then establish a connection between DRO and stochastic optimization with expectation constraints. Finally, we propose practical algorithms based on both batch convex solvers and stochastic functional gradient, which apply to general optimization and machine learning tasks.
翻译:我们用强力优化理论和功能分析的洞察力提出内核分布稳健优化(Kernel DRO) 。 我们的方法使用复制内核Hilbert空间(RKHS) 来构建一系列广泛的 convex 模棱两可的组合, 这些组合可以被广泛化, 以整体概率度量和有限顺序瞬间界限为基础。 这个视角统一了多种现有稳健和随机优化方法。 我们证明我们有一个理论, 将典型的两极性在瞬间数学问题中进行概括化。 通过这个理论, 我们重新定义了 DRO 措施在搜索 RKHS 功能的双重程序中的最大化。 使用通用的 RKHS, 理论适用于广泛的损失功能类别, 提升共同的限制, 如多子值损失和利普施奇茨常数的知识 。 我们随后在DRO 和Stochatic 优化之间建立起一个连接。 最后, 我们提出基于批量 convex 解算法和 功能梯度的实用算法, 适用于一般的优化和机器学习任务。