Granular sound synthesis is a popular audio generation technique based on rearranging sequences of small waveform windows. In order to control the synthesis, all grains in a given corpus are analyzed through a set of acoustic descriptors. This provides a representation reflecting some form of local similarities across the grains. However, the quality of this grain space is bound by that of the descriptors. Its traversal is not continuously invertible to signal and does not render any structured temporality. We demonstrate that generative neural networks can implement granular synthesis while alleviating most of its shortcomings. We efficiently replace its audio descriptor basis by a probabilistic latent space learned with a Variational Auto-Encoder. In this setting the learned grain space is invertible, meaning that we can continuously synthesize sound when traversing its dimensions. It also implies that original grains are not stored for synthesis. Another major advantage of our approach is to learn structured paths inside this latent space by training a higher-level temporal embedding over arranged grain sequences. The model can be applied to many types of libraries, including pitched notes or unpitched drums and environmental noises. We report experiments on the common granular synthesis processes as well as novel ones such as conditional sampling and morphing.


翻译:粒子合成是一种以小波形窗口的重新排列序列为基础的流行音频生成技术。 为了控制合成, 通过一组声学描述器对特定元素中的所有粒子进行分析。 这代表了各个粒子之间的某种地方相似性。 但是, 这个粒子空间的质量是受描述器的束缚的。 它的穿孔不会不断地被忽略, 也不会造成任何结构化的时间性。 我们证明基因神经网络可以实施颗粒合成, 同时减轻其大部分缺点。 为了控制合成, 我们通过一套动态自动电解器来有效地用一个概率隐蔽空间来取代其音频描述器基础。 在此设置中, 所学的谷物空间是不可逆的, 意思是, 在穿孔时我们可以持续合成它的声音。 它还意味着原始的粒子不会被存储来进行合成。 我们的方法的另一个主要优点是, 通过训练高层次的时间嵌入于所安排的粒子序列, 来学习这个隐蔽的路径。 这个模型可以应用于许多种类的图书馆, 包括嵌入式的笔记或无刺的圆形隐蔽的隐蔽的隐蔽的隐形器和环境变压器。 我们作为普通的合成的合成的磁制的合成过程。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
31+阅读 · 2021年6月12日
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
专知会员服务
60+阅读 · 2020年3月19日
Capsule Networks,胶囊网络,57页ppt,布法罗大学
专知会员服务
68+阅读 · 2020年2月29日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年2月19日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
Arxiv
6+阅读 · 2019年4月4日
VIP会员
相关VIP内容
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
31+阅读 · 2021年6月12日
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
专知会员服务
60+阅读 · 2020年3月19日
Capsule Networks,胶囊网络,57页ppt,布法罗大学
专知会员服务
68+阅读 · 2020年2月29日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员