We present a methodology combining neural networks with physical principle constraints in the form of partial differential equations (PDEs). The approach allows to train neural networks while respecting the PDEs as a strong constraint in the optimisation as apposed to making them part of the loss function. The resulting models are discretised in space by the finite element method (FEM). The method applies to both stationary and transient as well as linear/nonlinear PDEs. We describe implementation of the approach as an extension of the existing FEM framework FEniCS and its algorithmic differentiation tool dolfin-adjoint. Through series of examples we demonstrate capabilities of the approach to recover coefficients and missing PDE operators from observations. Further, the proposed method is compared with alternative methodologies, namely, physics informed neural networks and standard PDE-constrained optimisation. Finally, we demonstrate the method on a complex cardiac cell model problem using deep neural networks.
翻译:我们提出了一个方法,将神经网络与局部差异方程式(PDEs)形式的物理主理限制结合起来。该方法允许对神经网络进行培训,同时尊重PDEs,将其作为使这些网络成为损失功能一部分的适应性最佳化的强大制约因素。由此产生的模型在空间中通过有限元素法(FEM)分离。该方法适用于静止和短暂以及线性/非线性PDEs。我们把实施该方法描述为现有FEM框架FENICS及其算法差异工具dolfin-adwork的延伸。我们通过一系列实例展示了从观测中回收系数和缺失PDE操作者的方法的能力。此外,将拟议方法与替代方法进行比较,即物理知情神经网络和标准PDE约束的优化。最后,我们用深神经网络展示了复杂的心细胞模型问题的方法。