There are thousands of actively spoken languages on Earth, but a single visual world. Grounding in this visual world has the potential to bridge the gap between all these languages. Our goal is to use visual grounding to improve unsupervised word mapping between languages. The key idea is to establish a common visual representation between two languages by learning embeddings from unpaired instructional videos narrated in the native language. Given this shared embedding we demonstrate that (i) we can map words between the languages, particularly the 'visual' words; (ii) that the shared embedding provides a good initialization for existing unsupervised text-based word translation techniques, forming the basis for our proposed hybrid visual-text mapping algorithm, MUVE; and (iii) our approach achieves superior performance by addressing the shortcomings of text-based methods -- it is more robust, handles datasets with less commonality, and is applicable to low-resource languages. We apply these methods to translate words from English to French, Korean, and Japanese -- all without any parallel corpora and simply by watching many videos of people speaking while doing things.


翻译:地球上有成千上万个积极使用的语言, 只有一个视觉世界。 以这个视觉世界为基础, 有可能缩小所有语言之间的差距。 我们的目标是使用视觉基础, 改善语言间未经监督的文字绘图。 关键的想法是通过学习用母语解说的未经保护的教学视频嵌入, 在两种语言之间建立共同的视觉代表。 基于这种共同嵌入, 我们展示了 (i) 我们可以在语言之间绘制单词, 特别是“ 视觉” 单词;(ii) 共享嵌入为现有的未经监督的文本翻译技术提供了良好的初始化, 构成了我们拟议的视觉文本混合绘图算法( MUVE)的基础; 以及 (iii) 我们的方法通过解决基于文本的方法的缺陷而取得优异性表现 -- -- 它更强大, 处理数据集的共性较少, 并且适用于低资源语言。 我们运用这些方法将文字从英语翻译成法语、 韩语和日语 -- -- 所有这些都没有任何平行的连体, 并且只是通过在做事情时观看许多人说话的许多视频。

7
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年12月19日
Arxiv
3+阅读 · 2018年8月27日
Phrase-Based & Neural Unsupervised Machine Translation
Arxiv
8+阅读 · 2018年7月12日
Arxiv
6+阅读 · 2018年2月26日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
3+阅读 · 2018年12月19日
Arxiv
3+阅读 · 2018年8月27日
Phrase-Based & Neural Unsupervised Machine Translation
Arxiv
8+阅读 · 2018年7月12日
Arxiv
6+阅读 · 2018年2月26日
Arxiv
7+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员