Miniaturized autonomous unmanned aerial vehicles (UAVs) are an emerging and trending topic. With their form factor as big as the palm of one hand, they can reach spots otherwise inaccessible to bigger robots and safely operate in human surroundings. The simple electronics aboard such robots (sub-100mW) make them particularly cheap and attractive but pose significant challenges in enabling onboard sophisticated intelligence. In this work, we leverage a novel neural architecture search (NAS) technique to automatically identify several Pareto-optimal convolutional neural networks (CNNs) for a visual pose estimation task. Our work demonstrates how real-life and field-tested robotics applications can concretely leverage NAS technologies to automatically and efficiently optimize CNNs for the specific hardware constraints of small UAVs. We deploy several NAS-optimized CNNs and run them in closed-loop aboard a 27-g Crazyflie nano-UAV equipped with a parallel ultra-low power System-on-Chip. Our results improve the State-of-the-Art by reducing the in-field control error of 32% while achieving a real-time onboard inference-rate of ~10Hz@10mW and ~50Hz@90mW.
翻译:小型无人驾驶飞行器(UAVs)是一个新兴和趋势性议题。其形式因素如一只手掌掌,其规模巨大,可以到达更大的机器人无法进入的地方,在人类周围安全运行。这类机器人(Sub-100mW)上的简单电子使其特别廉价和有吸引力,但在使机载精密智能上形成能力方面面临重大挑战。在这项工作中,我们利用一种新型神经结构搜索技术(NAS)自动识别几个超小型超小型神经神经网络(CNNs),以进行视觉影响估测任务。我们的工作表明,现实生活和实地测试的机器人应用如何具体利用NAS技术自动和高效优化有线电视新闻网对小型UAVs的具体硬件限制。我们安装了几个NAS优化的CNN,并在一个27g Gratsflie Nam-UAV(NAS)上运行,配有平行的超低功率系统在芯片上。我们的成果通过减少32-100HM的实地控制错误,同时实现实时-50HMY-100H的超高压率,从而改进了国家艺术。</s>