We show that for every $k\in\mathbb{N}$ and $\varepsilon>0$, for large enough alphabet $R$, given a $k$-CSP with alphabet size $R$, it is NP-hard to distinguish between the case that there is an assignment satisfying at least $1-\varepsilon$ fraction of the constraints, and the case no assignment satisfies more than $1/R^{k-1-\varepsilon}$ of the constraints. This result improves upon prior work of [Chan, Journal of the ACM 2016], who showed the same result with weaker soundness of $O(k/R^{k-2})$, and nearly matches the trivial approximation algorithm that finds an assignment satisfying at least $1/R^{k-1}$ fraction of the constraints. Our proof follows the approach of a recent work by the authors, wherein the above result is proved for $k=2$. Our main new ingredient is a counting lemma for hyperedges between pseudo-random sets in the Grassmann graphs, which may be of independent interest.


翻译:我们证明对于任意$k\\in\\mathbb{N}$和$\\varepsilon>0$,当字母表$R$足够大时,对于字母表规模为$R$的$k$-CSP问题,区分以下两种情况是NP困难的:存在赋值满足至少$1-\\varepsilon$比例的约束条件,与不存在赋值能满足超过$1/R^{k-1-\\varepsilon}$比例的约束条件。该结果改进了[Chan, Journal of the ACM 2016]先前的工作,后者在$O(k/R^{k-2})$的较弱可靠性条件下证明了相同结论,且几乎匹配了平凡近似算法(能找到满足至少$1/R^{k-1}$比例约束的赋值)的性能界限。我们的证明遵循作者近期工作中提出的方法,其中上述结果已针对$k=2$的情况得到证明。我们引入的主要新工具是格拉斯曼图中伪随机集之间超边的计数引理,该引理可能具有独立的研究价值。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员