Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.
翻译:神经机器翻译(NMT)是一种基于深层次学习的机器翻译方法,在大规模平行公司存在的情况下产生最先进的翻译性能。 尽管高质量和特定领域的翻译在现实世界中至关重要,但特定领域的翻译通常很少或根本不存在,因此,在这种情况下,香草NMT表现不佳。 利用外部平行公司和单语公司进行内部翻译的适应性应用对具体领域的翻译非常重要。 在本文中,我们全面调查了国家技术小组的最新领域适应技术。