Manually labeling objects by tracing their boundaries is a laborious process. In Polygon-RNN++ the authors proposed Polygon-RNN that produces polygonal annotations in a recurrent manner using a CNN-RNN architecture, allowing interactive correction via humans-in-the-loop. We propose a new framework that alleviates the sequential nature of Polygon-RNN, by predicting all vertices simultaneously using a Graph Convolutional Network (GCN). Our model is trained end-to-end. It supports object annotation by either polygons or splines, facilitating labeling efficiency for both line-based and curved objects. We show that Curve-GCN outperforms all existing approaches in automatic mode, including the powerful PSP-DeepLab and is significantly more efficient in interactive mode than Polygon-RNN++. Our model runs at 29.3ms in automatic, and 2.6ms in interactive mode, making it 10x and 100x faster than Polygon-RNN++.
翻译:通过追踪边界对物体进行手工标签是一个艰巨的过程。 在 Poligon- RNN++ 中, 作者们提议多边形- RNNNN 模式, 使用CNN- RNN 结构, 以经常性的方式生成多边形说明, 允许通过环形人进行互动校正。 我们提议一个新的框架, 通过同时使用图形革命网络( GCN ) 预测多边形- RNNNN 的连续性质, 减轻多边形- 的连续性。 我们的模型经过培训, 最终到终端。 它支持多边形或样条对物体进行批注, 方便线基和曲线对象的标签效率。 我们显示, 曲线- GCN 模式在自动模式上比所有现有方法, 包括强大的 PSP- DeepLab 模式比 多边形- RNNN++ 有效得多。 我们的模型自动运行在29.3米, 互动模式中运行2.6米,, 使其比多边形- RNNN+ 0x 更快 10 和 100x 。