While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.
翻译:虽然现有的机器学习模式在情感分类方面取得了巨大成功,但通常没有明确体现情感导向的文字互动,这可能导致在片段(短语或句子)一级进行精细分析的结果差。 集成机为推荐者系统学习元素思维互动提供了一种可能的学习方法,但由于无法模拟背景和文字序列,这些模式并不直接适用于我们的任务。 在这项工作中,我们开发了两个位置认知化集成机,它们考虑到文字互动、背景和位置信息。 这些信息在一套注重情感的文字互动矢量中被联合编码。 与传统的单词嵌入器相比, SWI 矢量明确捕捉到情感导向的文字互动并简化参数学习。 实验结果表明,虽然它们具有与最先进的文件级分类方法的类似性能,但它们有利于编集/感应层面的情绪分析。