Automatic underground parking has attracted considerable attention as the scope of autonomous driving expands. The auto-vehicle is supposed to obtain the environmental information, track its location, and build a reliable map of the scenario. Mainstream solutions consist of well-trained neural networks and simultaneous localization and mapping (SLAM) methods, which need numerous carefully labeled images and multiple sensor estimations. However, there is a lack of underground parking scenario datasets with multiple sensors and well-labeled images that support both SLAM tasks and perception tasks, such as semantic segmentation and parking slot detection. In this paper, we present SUPS, a simulated dataset for underground automatic parking, which supports multiple tasks with multiple sensors and multiple semantic labels aligned with successive images according to timestamps. We intend to cover the defect of existing datasets with the variability of environments and the diversity and accessibility of sensors in the virtual scene. Specifically, the dataset records frames from four surrounding fisheye cameras, two forward pinhole cameras, a depth camera, and data from LiDAR, inertial measurement unit (IMU), GNSS. Pixel-level semantic labels are provided for objects, especially ground signs such as arrows, parking lines, lanes, and speed bumps. Perception, 3D reconstruction, depth estimation, and SLAM, and other relative tasks are supported by our dataset. We also evaluate the state-of-the-art SLAM algorithms and perception models on our dataset. Finally, we open source our virtual 3D scene built based on Unity Engine and release our dataset at https://github.com/jarvishou829/SUPS.
翻译:随着自动驾驶范围的扩大,自动地下停车场引起了相当多的注意。自动车辆本应获得环境信息,跟踪其位置,并绘制一个可靠的情景地图。主流解决方案包括训练有素的神经网络以及同时的本地化和绘图方法,这些方法需要大量经过仔细标签的图像和多个传感器估计。然而,缺乏具有多个传感器和标签良好的图像的地下停车场假设情景数据集,这些数据集既支持SLAM的任务,也支持SLAM任务和视觉任务,如语义分解和停车场探测。本文中,我们介绍了SUPS,一个用于地下自动停车的模拟数据集,该数据集支持多项任务,同时使用多个传感器和多个与按时间戳排列的连续图像相匹配的语义标签。我们打算覆盖现有数据集的缺陷,包括环境的变异性以及虚拟场景区传感器的多样性和无障碍。具体来说,四个周围的鱼眼摄像机、两台前针眼摄像机、深度摄像机、以及来自LiDAR、惯性测量单位、全球导航卫星系统、SULS-DS-S-SLS-S-S-Serviel-S-S-deal Streal li-deal laveal 以及我们在地面上的数据路路路路路路路标,我们的数据结构和路路路路标,我们的数据、路路标、Sil-Sil-Sil-Sild-Sild-Sil-Sil-Sild-SLVD-SLV-s-s-s-s-s-s-s-Sildal-Sildal-Sildaldaldaldal-Sildaldaldaldaldal-dal-s、路标,以及路标,我们在地面路路标、路标、路路路路标、路路路段、路路路路路路段、路段、路段、路段、路段、路路路路标、路路路路路路路路段、路路路路段、路路路路路路路路路段、我们路段、路段、路路路路段、路路段、路路路路路路路路路段、路路路路路段、路路路路路路路路路路路路路路路路路路</s>