In this paper, we propose a stochastic version of the classical Tseng's forward-backward-forward method with inertial term for solving monotone inclusions given by the sum of a maximal monotone operator and a single-valued monotone operator in real Hilbert spaces. We obtain the almost sure convergence for the general case and the rate $\mathcal{O}(1/n)$ in expectation for the strong monotone case. Furthermore, we derive $\mathcal{O}(1/n)$ rate convergence of the primal-dual gap for saddle point problems.
翻译:在本文中,我们提出了经典尖峰前向前向前向方法的随机版本,用惯性术语解决单体内含单体的单体内涵,由最大单体内管操作员和纯值单体内单体内操作员在真正的Hilbert空间的总和给出。我们获得了一般案例和对强力单体内立案的预期汇率$\mathcal{O}(1/n)的几乎可以肯定的趋同。此外,我们得出了对马鞍点问题的原始双向间隙汇合率$\mathcal{O}(1/n) 。