Large imbalance often exists between the foreground points (i.e., objects) and the background points in outdoor LiDAR point clouds. It hinders cutting-edge detectors from focusing on informative areas to produce accurate 3D object detection results. This paper proposes a novel object detection network by semantical point-voxel feature interaction, dubbed PV-RCNN++. Unlike most of existing methods, PV-RCNN++ explores the semantic information to enhance the quality of object detection. First, a semantic segmentation module is proposed to retain more discriminative foreground keypoints. Such a module will guide our PV-RCNN++ to integrate more object-related point-wise and voxel-wise features in the pivotal areas. Then, to make points and voxels interact efficiently, we utilize voxel query based on Manhattan distance to quickly sample voxel-wise features around keypoints. Such the voxel query will reduce the time complexity from O(N) to O(K), compared to the ball query. Further, to avoid being stuck in learning only local features, an attention-based residual PointNet module is designed to expand the receptive field to adaptively aggregate the neighboring voxel-wise features into keypoints. Extensive experiments on the KITTI dataset show that PV-RCNN++ achieves 81.60$\%$, 40.18$\%$, 68.21$\%$ 3D mAP on Car, Pedestrian, and Cyclist, achieving comparable or even better performance to the state-of-the-arts.
翻译:前景点( 对象) 和 户外 LiDAR 点云的背景点之间往往存在巨大的不平衡。 它阻碍尖端探测器聚焦于信息区, 以产生准确的 3D 对象检测结果。 本文提议通过语义点- voxel 特征互动, 被称为 PV- RCNN+++ 来建立一个新型的物体检测网络。 与大多数现有方法不同, PV- RCNN++ 探索语义信息, 以提高物体检测质量。 首先, 提议了一个语义分割模块, 以保留更具有歧视性的 前景点。 这样的模块将指导我们的 PV- RCNN++ 在关键地区整合更多与对象相关的点和反毒点特性。 然后, 我们使用基于曼哈顿距离的 voxel 查询, 在关键点周围快速抽样的 voxel 特性。 这样的 voxel 查询将降低时间复杂性, 从 O( N) 到 O $ $, 美元 到 O ( K) 美元 。 。 美元 到球查询 。 。 此外, 避免 只能学习本地 的 C- ++ 的 C- Q- Q- sal- sal- 点 adal- slovec- adal adal- sal- sal- sal adal adal adal adal 模 模 模 。