Existing methods based on meta-learning predict novel-class labels for (target domain) testing tasks via meta knowledge learned from (source domain) training tasks of base classes. However, most existing works may fail to generalize to novel classes due to the probably large domain discrepancy across domains. To address this issue, we propose a novel adversarial feature augmentation (AFA) method to bridge the domain gap in few-shot learning. The feature augmentation is designed to simulate distribution variations by maximizing the domain discrepancy. During adversarial training, the domain discriminator is learned by distinguishing the augmented features (unseen domain) from the original ones (seen domain), while the domain discrepancy is minimized to obtain the optimal feature encoder. The proposed method is a plug-and-play module that can be easily integrated into existing few-shot learning methods based on meta-learning. Extensive experiments on nine datasets demonstrate the superiority of our method for cross-domain few-shot classification compared with the state of the art. Code is available at https://github.com/youthhoo/AFA_For_Few_shot_learning


翻译:以元学习为基础的现有方法预测了(目标域)测试任务的新类标签(目标域),方法是通过从基础班的培训任务(源域)中学习的元知识(源域),但是,大多数现有工作可能由于各领域之间可能存在巨大的领域差异而不能概括为新类。为了解决这一问题,我们提议了一种新的对抗性特征增强(AFA)方法,以弥合在微粒学习中存在的领域差距。功能增强的目的是通过最大限度地扩大域差异来模拟分布差异。在对抗性培训期间,通过区分增强的功能(未见域)与原始功能(见域)来学习域区分域歧视者,而将域差异最小化以获得最佳的功能编码。拟议方法是一个插接和功能模块,可以很容易地融入基于元学习的现有几发学习方法中。对九个数据集进行的广泛实验表明我们跨杜梅少发分类方法优于艺术状态。代码可在https://github.com/youthhoo/AFAFAF_Few_shot_ining_ining)查阅原始功能。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
49+阅读 · 2022年10月2日
专知会员服务
44+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
54+阅读 · 2020年2月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年1月20日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员