We study the problem of few-shot graph classification across domains with nonequivalent feature spaces by introducing three new cross-domain benchmarks constructed from publicly available datasets. We also propose an attention-based graph encoder that uses three congruent views of graphs, one contextual and two topological views, to learn representations of task-specific information for fast adaptation, and task-agnostic information for knowledge transfer. We run exhaustive experiments to evaluate the performance of contrastive and meta-learning strategies. We show that when coupled with metric-based meta-learning frameworks, the proposed encoder achieves the best average meta-test classification accuracy across all benchmarks. The source code and data will be released here: https://github.com/kavehhassani/metagrl
翻译:我们通过采用根据公开可得的数据集构建的三项新的跨域基准,研究在具有非等效特征空间的领域中对不同领域进行微小图表分类的问题,我们还提议采用一个基于注意的图形编码器,使用三种对图表的一致观点、一种背景观点和两种地形观点,以了解用于快速适应的任务信息的表现,以及用于知识转让的任务-不可知信息。我们进行了详尽的实验,以评价对比式和元化学习战略的绩效。我们表明,在采用基于标准的元学习框架的同时,拟议的编码器在所有基准中达到了最佳的平均元测试分类精确度。源代码和数据将在这里发布:https://github.com/kavehassani/metagrl。