This article presents an artificial intelligence (AI) architecture intended to simulate the iterative updating of the human working memory system. It features several interconnected neural networks designed to emulate the specialized modules of the cerebral cortex. These are structured hierarchically and integrated into a global workspace. They are capable of temporarily maintaining high-level representational patterns akin to the psychological items maintained in working memory. This maintenance is made possible by persistent neural activity in the form of two modalities: sustained neural firing (resulting in a focus of attention) and synaptic potentiation (resulting in a short-term store). Representations held in persistent activity are recursively replaced resulting in incremental changes to the content of the working memory system. As this content gradually evolves, successive processing states overlap and are continuous with one another. The present article will explore how this architecture can lead to iterative shift in the distribution of coactive representations, ultimately leading to mental continuity between processing states, and thus to human-like thought and cognition. Like the human brain, this AI working memory store will be linked to multiple imagery (topographic map) generation systems corresponding to various sensory modalities. As working memory is iteratively updated, the maps created in response will construct sequences of related mental imagery. Thus, neural networks emulating the prefrontal cortex and its reciprocal interactions with early sensory and motor cortex capture the imagery guidance functions of the human brain. This sensory and motor imagery creation, coupled with an iteratively updated working memory store may provide an AI system with the cognitive assets needed to achieve synthetic consciousness or artificial sentience.
翻译:暂无翻译