Systems of interacting continuous-time Markov chains are a powerful model class, but inference is typically intractable in high dimensional settings. Auxiliary information, such as noisy observations, is typically only available at discrete times, and incorporating it via a Doob's $h-$transform gives rise to an intractable posterior process that requires approximation. We introduce Latent Interacting Particle Systems, a model class parameterizing the generator of each Markov chain in the system. Our inference method involves estimating look-ahead functions (twist potentials) that anticipate future information, for which we introduce an efficient parameterization. We incorporate this approximation in a twisted Sequential Monte Carlo sampling scheme. We demonstrate the effectiveness of our approach on a challenging posterior inference task for a latent SIRS model on a graph, and on a neural model for wildfire spread dynamics trained on real data.


翻译:交互连续时间马尔可夫链系统是一类强大的模型,但在高维场景下其推断通常难以处理。辅助信息(如含噪声的观测)通常仅在离散时间点可用,通过Doob的$h-$变换将其纳入后,会产生一个难以处理、需要近似的后验过程。我们提出了潜在交互粒子系统,该类模型对系统中每个马尔可夫链的生成元进行参数化。我们的推断方法涉及估计能够预判未来信息的向前看函数(扭曲势),为此我们引入了一种高效的参数化方案。我们将此近似纳入一个扭曲的序贯蒙特卡罗采样框架中。我们在一个图结构上潜在SIRS模型具有挑战性的后验推断任务上,以及一个基于真实数据训练的林火蔓延动力学神经模型上,验证了我们方法的有效性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员