Recent breakthroughs in large language models (LLMs) have generated both interest and concern about their potential adoption as information sources or communication tools across different domains. In public health, where stakes are high and impacts extend across diverse populations, adopting LLMs poses unique challenges that require thorough evaluation. However, structured approaches for assessing potential risks in public health remain under-explored. To address this gap, we conducted focus groups with public health professionals and individuals with lived experience to unpack their concerns, situated across three distinct and critical public health issues that demand high-quality information: infectious disease prevention (vaccines), chronic and well-being care (opioid use disorder), and community health and safety (intimate partner violence). We synthesize participants' perspectives into a risk taxonomy, identifying and contextualizing the potential harms LLMs may introduce when positioned alongside traditional health communication. This taxonomy highlights four dimensions of risk to individuals, human-centered care, information ecosystem, and technology accountability. For each dimension, we unpack specific risks and offer example reflection questions to help practitioners adopt a risk-reflexive approach. By summarizing distinctive LLM characteristics and linking them to identified risks, we discuss the need to revisit prior mental models of information behaviors and complement evaluations with external validity and domain expertise through lived experience and real-world practices. Together, this work contributes a shared vocabulary and reflection tool for people in both computing and public health to collaboratively anticipate, evaluate, and mitigate risks in deciding when to employ LLM capabilities (or not) and how to mitigate harm.


翻译:近期大型语言模型(LLMs)的突破性进展,引发了各领域对其作为信息源或沟通工具的潜在应用前景的关注与担忧。在公共卫生这一影响深远且涉及多元人群的高风险领域,采用LLMs带来了独特的挑战,亟需系统评估。然而,针对公共卫生潜在风险的结构化评估方法仍显不足。为填补这一空白,我们组织了公共卫生专业人员与具身经验者的焦点小组,围绕三个对信息质量要求极高且至关重要的公共卫生议题——传染病预防(疫苗)、慢性病与健康管理(阿片类药物使用障碍)以及社区健康与安全(亲密伴侣暴力),深入剖析了他们的关切。我们将参与者的观点整合为风险分类体系,识别并情境化了LLMs与传统健康传播方式并存时可能引发的潜在危害。该分类体系突出了对个体、人本关怀、信息生态系统和技术问责四个维度的风险。针对每个维度,我们解析了具体风险并提供了示例性反思问题,以帮助从业者建立风险反思性实践框架。通过总结LLMs的独特性并将其与已识别的风险关联,我们讨论了有必要重新审视既往的信息行为心智模型,并通过具身经验与现实实践引入外部效度与领域专业知识以完善评估。本研究共同为计算与公共卫生领域的工作者提供了一套共享词汇与反思工具,以协同预判、评估并缓解在决定是否采用LLM能力以及如何减轻其危害时的各类风险。

0
下载
关闭预览

相关内容

分类学是分类的实践和科学。Wikipedia类别说明了一种分类法,可以通过自动方式提取Wikipedia类别的完整分类法。截至2009年,已经证明,可以使用人工构建的分类法(例如像WordNet这样的计算词典的分类法)来改进和重组Wikipedia类别分类法。 从广义上讲,分类法还适用于除父子层次结构以外的关系方案,例如网络结构。然后分类法可能包括有多父母的单身孩子,例如,“汽车”可能与父母双方一起出现“车辆”和“钢结构”;但是对某些人而言,这仅意味着“汽车”是几种不同分类法的一部分。分类法也可能只是将事物组织成组,或者是按字母顺序排列的列表;但是在这里,术语词汇更合适。在知识管理中的当前用法中,分类法被认为比本体论窄,因为本体论应用了各种各样的关系类型。 在数学上,分层分类法是给定对象集的分类树结构。该结构的顶部是适用于所有对象的单个分类,即根节点。此根下的节点是更具体的分类,适用于总分类对象集的子集。推理的进展从一般到更具体。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员