Nowadays in the field of semantic SLAM, how to correctly use semantic information for data association is still a problem worthy of study. The key to solving this problem is to correctly associate multiple object measurements of one object landmark, and refine the pose of object landmark. However, different objects locating closely are prone to be associated as one object landmark, and it is difficult to pick up a best pose from multiple object measurements associated with one object landmark. To tackle these problems, we propose a hierarchical object association strategy by means of multiple object tracking, through which closing objects will be correctly associated to different object landmarks, and an approach to refine the pose of object landmark from multiple object measurements. The proposed method is evaluated on a simulated sequence and several sequences in the Kitti dataset. Experimental results show a very impressive improvement with respect to the traditional SLAM and the state-of-the-art semantic SLAM method.


翻译:目前,在语义学 SLAM 领域,如何正确使用语义信息进行数据联系仍然是一个值得研究的问题。解决这一问题的关键是正确将一个天体标志的多重物体测量结果联系起来,并改进天体标志的形状。然而,距离较近的不同天体很容易作为一个天体标志联系起来,而且很难从与一个天体标志有关的多天体测量结果中找到最佳的构成。为了解决这些问题,我们建议通过多天体跟踪方法,将关闭天体与不同的天体标志正确联系起来,并采取一种方法,从多个天体测量中改进天体标志的形状。提议的方法以模拟序列和基蒂数据集的若干序列进行评估。实验结果显示,传统的SLMM 和最先进的语义性 SLM 方法取得了令人印象深刻的改善。

0
下载
关闭预览

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
专知会员服务
87+阅读 · 2019年12月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ORB-SLAM3来了!真有生之年!
CVer
10+阅读 · 2020年7月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关VIP内容
专知会员服务
87+阅读 · 2019年12月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
ORB-SLAM3来了!真有生之年!
CVer
10+阅读 · 2020年7月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
Top
微信扫码咨询专知VIP会员