论文题目: A Survey of Deep Learning-based Object Detection

论文摘要: 目标检测是计算机视觉中最重要和最具挑战性的分支之一,它已广泛应用于人们的生活中,例如监视安全性,自动驾驶等。随着用于检测任务的深度学习网络的迅速发展,对象检测器的性能得到了极大的提高。为了深入地了解目标检测的主要发展状况,在本次调查中,我们首先分析了现有典型检测模型的方法并描述了基准数据集。之后,我们以系统的方式全面概述了各种目标检测方法,涵盖了一级和二级检测器。此外,我们列出了传统和新的应用程序。还分析了对象检测的一些代表性分支。最后,我们讨论了利用这些对象检测方法来构建有效且高效的系统的体系结构,并指出了一组发展趋势,以更好地遵循最新的算法和进一步的研究。

作者介绍: Licheng Jiao 1982年获得中国上海交通大学博士学位,并分别于1984年和1990年获得西安交通大学的博士学位。 1990年至1991年,他是西安电子科技大学雷达信号处理国家重点实验室的博士后研究员。自1992年以来,焦博士一直是中国西安电子科技大学电子工程学院的教授,目前是电子工程学院的院长,也是智能感知与图像理解重点实验室的主任。 西安电子科技大学中国教育部 1992年,焦博士获得了青年科学技术奖。 1996年,他获得了中国教育部跨世纪专家基金的资助。 从1996年起,他被选为“中国第一级人才计划”的成员。2006年,他被霍英东教育基金会授予高中青年教师奖一等奖。 从2006年起,他被选为陕西省特别贡献专家。

成为VIP会员查看完整内容
0
39

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

目标检测作为机器视觉中重要任务之一,是人工智能体系中一个具有重要研究价值的技术分支。对于卷积神经网络框架、anchor-based模型和anchor-free模型三个主流的目标检测模型进行梳理。首先,综述了主流卷积神经网络框架的网络结构、优缺点以及相关的改进方法;其次从one-stage和two-stage两个分支对anchor-based类模型进行深入分析,总结了不同目标检测方法的研究进展;从早期探索、关键点和密集预测三部分分析anchor-free类模型。最后对该领域的未来发展趋势进行了思考与展望。

成为VIP会员查看完整内容
0
93

摘要: 目标检测算法应用广泛,一直是计算机视觉领域备受关注的研究热点。近年来,随着深度学习的发展,3D图像的目标检测研究取得了巨大的突破。与2D目标检测相比,3D目标检测结合了深度信息,能够提供目标的位置、方向和大小等空间场景信息,在自动驾驶和机器人领域发展迅速。文中首先对基于深度学习的2D目标检测算法进行概述;其次根据图像、激光雷达、多传感器等不同数据采集方式,分析目前具有代表性和开创性的3D目标检测算法;结合自动驾驶的应用场景,对比分析不同 3D 目标检测算法的性能、优势和局限性;最后总结了3D目标检测的应用意义以及待解决的问题,并对 3D 目标检测的发展方向和新的挑战进行了讨论和展望。

成为VIP会员查看完整内容
0
95

目标检测的任务是从图像中精确且高效地识别、定位出大量预定义类别的物体实例。随着深度学习的广泛应用,目标检测的精确度和效率都得到了较大提升,但基于深度学习的目标检测仍面临改进与优化主流目标检测算法的性能、提高小目标物体检测精度、实现多类别物体检测、轻量化检测模型等关键技术的挑战。针对上述挑战,本文在广泛文献调研的基础上,从双阶段、单阶段目标检测算法的改进与结合的角度分析了改进与优化主流目标检测算法的方法,从骨干网络、增加视觉感受野、特征融合、级联卷积神经网络和模型的训练方式的角度分析了提升小目标检测精度的方法,从训练方式和网络结构的角度分析了用于多类别物体检测的方法,从网络结构的角度分析了用于轻量化检测模型的方法。此外,对目标检测的通用数据集进行了详细介绍,从4个方面对该领域代表性算法的性能表现进行了对比分析,对目标检测中待解决的问题与未来研究方向做出预测和展望。目标检测研究是计算机视觉和模式识别中备受青睐的热点,仍然有更多高精度和高效的算法相继提出,未来将朝着更多的研究方向发展。

成为VIP会员查看完整内容
0
103

题目: Anomalous Instance Detection in Deep Learning: A Survey

摘要:

深度学习(DL)容易受到分布不均匀和对抗性示例的影响,从而导致不正确的输出。为了使DL更具有鲁棒性,最近提出了几种方法:异常检测技术来检测(并丢弃)这些异常样本。本研究试图为基于DL的应用程序异常检测的研究提供一个结构化的、全面的概述。我们根据现有技术的基本假设和采用的方法为它们提供了一个分类。我们讨论了每个类别中的各种技术,并提供了这些方法的相对优势和劣势。我们在这次调查中的目标是提供一个更容易并且更好理解的技术,这项技术是在这方面已经做过研究的,且属于不同的类别的。最后,我们强调了在DL系统中应用异常检测技术所面临的未解决的研究挑战,并提出了一些具有重要影响的未来研究方向。

成为VIP会员查看完整内容
0
68

题目: Network Representation Learning: A Survey

摘要:

随着信息技术的广泛应用,信息网络越来越受到人们的欢迎,它可以捕获各种学科之间的复杂关系,如社交网络、引用网络、电信网络和生物网络。对这些网络的分析揭示了社会生活的不同方面,如社会结构、信息传播和交流模式。然而,在现实中,大规模的信息网络往往使网络分析任务计算昂贵或难以处理。网络表示学习是近年来提出的一种新的学习范式,通过保留网络拓扑结构、顶点内容和其它边信息,将网络顶点嵌入到低维向量空间中。这有助于在新的向量空间中方便地处理原始网络,以便进行进一步的分析。在这项调查中,我们全面回顾了目前在数据挖掘和机器学习领域的网络表示学习的文献。我们提出了新的分类法来分类和总结最先进的网络表示学习技术,根据潜在的学习机制、要保留的网络信息、以及算法设计和方法。我们总结了用于验证网络表示学习的评估协议,包括已发布的基准数据集、评估方法和开源算法。我们还进行了实证研究,以比较代表性的算法对常见数据集的性能,并分析其计算复杂性。最后,我们提出有希望的研究方向,以促进未来的研究。

作者简介:

Xingquan Zhu是佛罗里达大西洋大学计算机与电气工程和计算机科学系的教授,在中国上海复旦大学获得了计算机科学博士学位。曾在多家研究机构和大学工作过,包括微软亚洲研究院(实习)、普渡大学、佛蒙特大学和悉尼科技大学。主要研究方向:数据挖掘、机器学习、多媒体系统、生物信息学。

成为VIP会员查看完整内容
0
64

论文题目: Salient Object Detection in the Deep Learning Era: An In-Depth Survey

论文摘要: 作为计算机视觉中的一个重要问题,图像中的显著目标检测(SOD)近年来得到了越来越多的研究。最近在超氧化物歧化酶方面的进展主要是基于深度学习的解决方案(称为深超氧化物歧化酶)。为了便于深入理解深层SODs,本文提供了一个全面的综述,涵盖了从算法分类到未解决的开放问题的各个方面。特别是,我们首先从网络结构、监控级别、学习范式和对象/实例级别检测等不同角度对深度超氧化物歧化酶算法进行了综述。在此基础上,总结了现有的SOD评价数据集和指标体系。然后,在前人工作的基础上,认真编写了一个完整的SOD方法的基准测试结果,并对对比结果进行了详细的分析。另外,通过构造一个新的具有丰富属性标注的SOD数据集,研究了不同属性下的SOD算法的性能,这在以前的研究中是很少的。我们首次在现场进一步分析了deep-SOD模型的鲁棒性和可转移性。我们还研究了输入扰动的影响,以及现有SOD数据集的通用性和硬度。最后,讨论了超氧化物歧化酶存在的问题和挑战,并指出了未来可能的研究方向。

成为VIP会员查看完整内容
Salient Object Detection in the Deep Learning Era An In-Depth Survey.pdf
0
33

论文主题: Recent Advances in Deep Learning for Object Detection

论文摘要: 目标检测是计算机视觉中的基本视觉识别问题,并且在过去的几十年中已得到广泛研究。目标检测指的是在给定图像中找到具有精确定位的特定目标,并为每个目标分配一个对应的类标签。由于基于深度学习的图像分类取得了巨大的成功,因此近年来已经积极研究了使用深度学习的对象检测技术。在本文中,我们对深度学习中视觉对象检测的最新进展进行了全面的调查。通过复习文献中最近的大量相关工作,我们系统地分析了现有的目标检测框架并将调查分为三个主要部分:(i)检测组件,(ii)学习策略(iii)应用程序和基准。在调查中,我们详细介绍了影响检测性能的各种因素,例如检测器体系结构,功能学习,建议生成,采样策略等。最后,我们讨论了一些未来的方向,以促进和刺激未来的视觉对象检测研究。与深度学习。

成为VIP会员查看完整内容
0
67

论文题目: Object Detection in 20 Years: A Survey

论文简介:
目标检测作为计算机视觉中最基本和最具挑战性的问题之一,近年来受到了极大的关注。它在过去二十年的发展可以看作是计算机视觉历史的缩影。如果我们将当今的物体检测视为在深度学习的力量下的技术美学,那么将时光倒流到20年前,我们将见证冷武器时代的智慧。鉴于目标检测技术的技术发展,本文跨越了四分之一世纪的时间(从1990年代到2019年)广泛地审查了400多篇论文。本文涵盖了许多主题,包括历史上的里程碑检测器,检测数据集,度量,检测系统的基本构建块,加速技术以及最新的检测技术水平。本文还回顾了一些重要的检测应用程序,例如行人检测,面部检测,文本检测等,并对它们的挑战以及近年来的技术改进进行了深入分析。

成为VIP会员查看完整内容
0
46
小贴士
相关资讯
最全综述 | 图像目标检测
计算机视觉life
22+阅读 · 2019年6月24日
目标检测技术二十年综述
计算机视觉life
13+阅读 · 2019年5月28日
综述 | 近5年基于深度学习的目标检测算法
计算机视觉life
18+阅读 · 2019年4月18日
深度学习目标检测算法综述
AI研习社
15+阅读 · 2019年2月1日
博客 | 基于深度学习的目标检测算法综述(二)
干货 | 基于深度学习的目标检测算法综述(二)
AI科技评论
13+阅读 · 2018年8月20日
论文 | 基于CNN的目标检测算法
七月在线实验室
9+阅读 · 2017年12月7日
深度学习目标检测模型全面综述:Faster R-CNN、R-FCN和SSD
深度学习世界
10+阅读 · 2017年9月18日
【推荐】深度学习目标检测全面综述
机器学习研究会
17+阅读 · 2017年9月13日
相关论文
Anomalous Instance Detection in Deep Learning: A Survey
Saikiran Bulusu,Bhavya Kailkhura,Bo Li,Pramod K. Varshney,Dawn Song
22+阅读 · 2020年3月16日
Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark
Ke Li,Gang Wan,Gong Cheng,Liqiu Meng,Junwei Han
22+阅读 · 2019年9月22日
Object detection on aerial imagery using CenterNet
Dheeraj Reddy Pailla,Varghese Kollerathu,Sai Saketh Chennamsetty
6+阅读 · 2019年8月22日
Object Detection in 20 Years: A Survey
Zhengxia Zou,Zhenwei Shi,Yuhong Guo,Jieping Ye
38+阅读 · 2019年5月13日
Golnaz Ghiasi,Tsung-Yi Lin,Ruoming Pang,Quoc V. Le
6+阅读 · 2019年4月16日
Bingyi Kang,Zhuang Liu,Xin Wang,Fisher Yu,Jiashi Feng,Trevor Darrell
6+阅读 · 2018年12月5日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
8+阅读 · 2018年9月6日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Jiayuan Gu,Han Hu,Liwei Wang,Yichen Wei,Jifeng Dai
4+阅读 · 2018年3月19日
Top