Robust cross-seasonal localization is one of the major challenges in long-term visual navigation of autonomous vehicles. In this paper, we exploit recent advances in semantic segmentation of images, i.e., where each pixel is assigned a label related to the type of object it represents, to solve the problem of long-term visual localization. We show that semantically labeled 3D point maps of the environment, together with semantically segmented images, can be efficiently used for vehicle localization without the need for detailed feature descriptors (SIFT, SURF, etc.). Thus, instead of depending on hand-crafted feature descriptors, we rely on the training of an image segmenter. The resulting map takes up much less storage space compared to a traditional descriptor based map. A particle filter based semantic localization solution is compared to one based on SIFT-features, and even with large seasonal variations over the year we perform on par with the larger and more descriptive SIFT-features, and are able to localize with an error below 1 m most of the time.
翻译:硬度跨季节本地化是自主车辆长期视觉导航的主要挑战之一。 在本文中,我们利用图像语义分解的最新进展,即每个像素被指定一个与其所代表的物体类型相关的标签,以解决长期视觉本地化问题。我们显示,带有语义标签的三维点环境地图,加上语义分割图像,可以有效地用于车辆本地化,而不需要详细的特征描述仪(SIFT、SURFs等)。因此,我们不依靠手工制作的特征描述仪,而是依靠对图像分解器的培训。由此绘制的地图的存储空间比基于传统描述仪的地图要少得多。基于语义本地化解决方案的粒子过滤器与基于SIFT特性的粒子过滤器相比,甚至与我们所表现的较大和描述性更强的SIFT特征相比,在一年中的季节性变化很大,并且能够以1米以下的错误进行本地化。