The success of existing salient object detection models relies on a large pixel-wise labeled training dataset. How-ever, collecting such a dataset is not only time-consuming but also very expensive. To reduce the labeling burden, we study semi-supervised salient object detection, and formulate it as an unlabeled dataset pixel-level confidence estimation problem by identifying pixels with less confident predictions. Specifically, we introduce a new latent variable model with an energy-based prior for effective latent space exploration, leading to more reliable confidence maps. With the proposed strategy, the unlabelled images can effectively participate in model training. Experimental results show that the proposed solution, using only 1/16 of the annotations from the original training dataset, achieves competitive performance compared with state-of-the-art fully supervised models.


翻译:现有的显要物体探测模型的成功取决于大型像素标签式的培训数据集。 如何收集这样的数据集不仅耗时费时,而且费钱。 为了减轻标签负担,我们研究半监督式显要物体探测,并通过识别不那么自信预测的像素来将其发展成一个未标记的像素级信任度估计问题。 具体地说, 我们引入了一个新的潜在变数模型,在有效潜伏空间探索之前先以能源为基础,从而获得更可靠的信心地图。 有了拟议战略,未贴标签的图像可以有效地参加模型培训。 实验结果显示,拟议的解决方案仅使用原始训练数据集说明的1/16,与最先进的全面监督模型相比,取得了竞争性的性能。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关论文
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员