The success of existing salient object detection models relies on a large pixel-wise labeled training dataset. How-ever, collecting such a dataset is not only time-consuming but also very expensive. To reduce the labeling burden, we study semi-supervised salient object detection, and formulate it as an unlabeled dataset pixel-level confidence estimation problem by identifying pixels with less confident predictions. Specifically, we introduce a new latent variable model with an energy-based prior for effective latent space exploration, leading to more reliable confidence maps. With the proposed strategy, the unlabelled images can effectively participate in model training. Experimental results show that the proposed solution, using only 1/16 of the annotations from the original training dataset, achieves competitive performance compared with state-of-the-art fully supervised models.
翻译:现有的显要物体探测模型的成功取决于大型像素标签式的培训数据集。 如何收集这样的数据集不仅耗时费时,而且费钱。 为了减轻标签负担,我们研究半监督式显要物体探测,并通过识别不那么自信预测的像素来将其发展成一个未标记的像素级信任度估计问题。 具体地说, 我们引入了一个新的潜在变数模型,在有效潜伏空间探索之前先以能源为基础,从而获得更可靠的信心地图。 有了拟议战略,未贴标签的图像可以有效地参加模型培训。 实验结果显示,拟议的解决方案仅使用原始训练数据集说明的1/16,与最先进的全面监督模型相比,取得了竞争性的性能。