Classic image inpainting is a restoration method that reconstructs missing image parts. However, a carefully selected mask of known pixels that yield a high quality inpainting can also act as a sparse image representation. This challenging spatial optimisation problem is essential for practical applications such as compression. So far, it has been almost exclusively addressed by model-based approaches. First attempts with neural networks seem promising, but are tailored towards specific inpainting operators or require postprocessing. To address this issue, we propose the first generative adversarial network for spatial inpainting data optimisation. In contrast to previous approaches, it allows joint training of an inpainting generator and a corresponding mask optimisation network. With a Wasserstein distance, we ensure that our inpainting results accurately reflect the statistics of natural images. This yields significant improvements in visual quality and speed over conventional stochastic models and also outperforms current spatial optimisation networks.
翻译:经典图像绘制是重建缺失图像部分的修复方法。 然而, 精心选择的已知像素的掩码, 能够产生高品质的像素, 也可以作为一种稀疏的图像表示方式。 这个具有挑战性的空间优化问题对于压缩等实际应用来说至关重要。 到目前为止, 这个问题几乎完全通过基于模型的方法来解决。 神经网络的最初尝试似乎很有希望, 但是是针对特定的油漆操作员或需要后处理的。 为了解决这个问题, 我们提议了第一个用于空间涂色数据优化的基因对抗网络。 与以往的方法不同, 它允许对油漆生成器和相应的遮罩优化网络进行联合培训。 我们用瓦塞尔斯坦距离确保我们的涂色结果准确反映自然图像的统计。 这在视觉质量和速度方面大大改进了常规的随机模型, 并且超越了当前的空间优化网络 。