The target of space-time video super-resolution (STVSR) is to increase both the frame rate (also referred to as the temporal resolution) and the spatial resolution of a given video. Recent approaches solve STVSR using end-to-end deep neural networks. A popular solution is to first increase the frame rate of the video; then perform feature refinement among different frame features; and last increase the spatial resolutions of these features. The temporal correlation among features of different frames is carefully exploited in this process. The spatial correlation among features of different (spatial) resolutions, despite being also very important, is however not emphasized. In this paper, we propose a spatial-temporal feature interaction network to enhance STVSR by exploiting both spatial and temporal correlations among features of different frames and spatial resolutions. Specifically, the spatial-temporal frame interpolation module is introduced to interpolate low- and high-resolution intermediate frame features simultaneously and interactively. The spatial-temporal local and global refinement modules are respectively deployed afterwards to exploit the spatial-temporal correlation among different features for their refinement. Finally, a novel motion consistency loss is employed to enhance the motion continuity among reconstructed frames. We conduct experiments on three standard benchmarks, Vid4, Vimeo-90K and Adobe240, and the results demonstrate that our method improves the state of the art methods by a considerable margin. Our codes will be available at https://github.com/yuezijie/STINet-Space-time-Video-Super-resolution.
翻译:空间时间视频超分辨率(STVSR)的目标是提高某一视频的框架率(也称为时间分辨率)和空间分辨率(STVSR),同时认真利用不同框架特征之间的时间相关性;在此过程中,仔细利用不同框架特征之间的时间相关性;尽管不同(空间)决议的特征也非常重要,但并未强调这些特征之间的空间相关性;在本文件中,我们提议建立一个空间时空特征互动网络,通过利用不同框架和空间分辨率特征之间的空间和时间相关性,加强STVSR。具体地说,空间时框架间插模块将同时和互动地引入低分辨率和高分辨率中间框架特征。此后,将分别部署空间时际本地和全球改进模块,以利用不同特征之间的空间时空相关性进行改进。最后,我们利用空间时空特征互动空间空间互动互动网络互动网络互动网络互动网络网络,以利用空间-时间特征互动网络特征互动网络互动网络互动网络互动网络互动网络,通过利用不同框架和空间分辨率特征之间的空间和时间相关性关系加强STVSRVSR。最后,创新的动态一致性损失将用来加强我们的标准-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间-空间定位-空间定位-空间-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间-空间-空间-空间-空间-空间定位-空间定位-空间-空间-空间定位-空间-空间-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间定位-空间