What matters for contrastive learning? We argue that contrastive learning heavily relies on informative features, or "hard" (positive or negative) features. Early works include more informative features by applying complex data augmentations and large batch size or memory bank, and recent works design elaborate sampling approaches to explore informative features. The key challenge toward exploring such features is that the source multi-view data is generated by applying random data augmentations, making it infeasible to always add useful information in the augmented data. Consequently, the informativeness of features learned from such augmented data is limited. In response, we propose to directly augment the features in latent space, thereby learning discriminative representations without a large amount of input data. We perform a meta learning technique to build the augmentation generator that updates its network parameters by considering the performance of the encoder. However, insufficient input data may lead the encoder to learn collapsed features and therefore malfunction the augmentation generator. A new margin-injected regularization is further added in the objective function to avoid the encoder learning a degenerate mapping. To contrast all features in one gradient back-propagation step, we adopt the proposed optimization-driven unified contrastive loss instead of the conventional contrastive loss. Empirically, our method achieves state-of-the-art results on several benchmark datasets.
翻译:对比性学习的要点是什么? 我们争辩说,对比性学习在很大程度上依赖于信息特性或“硬”(正或负)特征。早期工作包括通过应用复杂的数据扩增和大批量或记忆库来增加信息性能,包括更多的信息性能。早期工作包括通过应用复杂的数据扩增和大批量或记忆库来增加信息性能,以及最近的工程设计旨在探索信息性能的精细抽样方法。探索这些特征的关键挑战是源多视图数据是通过应用随机数据扩增生成的,这使得总是无法在扩大的数据中添加有用的信息。因此,从这种增强的数据中获取的信息性能有限。作为回应,我们提议直接增加潜在空间的特征,从而在没有大量输入数据的情况下学习歧视性的表达方式。我们运用一种元化学习技术来构建增强型生成器,通过考虑编码器的性能来更新网络参数。然而,输入数据不足可能会导致编码器学习崩溃性特征,从而导致增强性生成器发生故障。在客观功能中进一步添加新的边导调,以避免变坏的绘图。作为对比一个梯度调整步骤中的所有特征的对比,我们采用拟议的优化驱动的统一对比性调整式基准损失的方法。