A semilinear initial-boundary value problem with a Caputo time derivative of fractional order $\alpha\in(0,1)$ is considered, solutions of which typically exhibit a singular behaviour at an initial time. For L1-type discretizations of this problem, we employ the method of upper and lower solutions to obtain sharp pointwise-in-time error bounds on quasi-graded temporal meshes with arbitrary degree of grading. In particular, those results imply that milder (compared to the optimal) grading yields the optimal convergence rate $2-\alpha$ in positive time, while quasi-uniform temporal meshes yield first-order convergence in positive time. Furthermore, under appropriate conditions on the nonlinearity, the method of upper and lower solutions immediately implies that, similarly to the exact solutions, the computed solutions lie within a certain range. Semi-discretizations in time and full discretizations using finite differences and finite elements in space are addressed. The theoretical findings are illustrated by numerical experiments.
翻译:考虑的是一个半线性初始-线性初始值问题,即分数顺序的Caputo时间衍生物 $\ alpha\ in( 0, 1) 的半线性初始值问题,其解决办法通常在最初阶段表现出单一的行为。对于L1 型的这一问题的分解,我们采用上下解决方案的方法,在具有任意分级程度的准级级时短短短短短短间短短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间差。这些结果尤其表明,较温和(与最优相比)的定级在正时得出最佳趋同率的2- \ alphapha $,而准统一时短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间短间加结合,在非线性间短间短间短间短间短间短间短间短间短间短间混合。此外,在非线的适当条件下,在非线性适当条件下,在非线性条件下,在非线性情况下便产生第一等条件适当条件下,在非线性时会合。此外,在非线性条件下,在非线性情况下,在非线性情况下,高间短间短间短间短间短间短间不及较近间偶合合合合合合合。。此外,在不和低间办法方法方法方法即合。此外,在不一线性办法办法办法方法方法方法方法法方法即指法法方法法方法的计算办法法方法立即暗示内相同办法在一定间短间短间短间短间短间短间短间短间短间短间短间