项目名称: 离散时间马氏链的泛函不等式及遍历性
项目编号: No.11426219
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 宋延红
作者单位: 中南财经政法大学
项目金额: 3万元
中文摘要: 泛函不等式及遍历性是随机分析理论的重要研究分支,有着广泛的应用。本项目主要研究以下两个方面的问题:首先,我们拟利用推广的Cheeger常数法研究离散时间马氏链的弱Poincaré式。由于离散时间马氏链的转移核不一定是非负定的,因此新定义的Cheeger常数既要考虑正谱点又要考虑负谱点。进一步,我们拟研究马氏链的周期性对弱Poincaré式的影响。其次,我们计划采用概率方法并结合Poincaré式研究一般状态空间离散时间不可逆马氏链的几何遍历性,进而讨论谱隙和谱半径之间的定量关系。
中文关键词: 马氏链;几何遍历;一致遍历;Foster-Lyapunov 条件;泛函不等式
英文摘要: Functional inequalities and ergodicity are important branches of stochastic analysis, and they have a wide range of applications. The project is mainly devoted to studying two problems. Firstly, we intend to investigate weak Poincarénequalities for discrete-time Markov chains by using a generalized Cheeger's method. Since the transition kernel of discrete-time Markov chains may not be non-negative definite, the new defined Cheeger constants should be closely related to both the positive and the negative spectral points. Moreover, the effect of periodicity on weak Poincarénequalities will also be considered. Secondly, combining a probabilistic method with Poincarénequalities, we aim to study the geometric ergodicity for non-reversible discrete-time Markov chains on general state spaces, and then discuss the quantitative relationship between spectral gap and spectral radius.
英文关键词: Markov chain;geometric ergodicity;uniform ergodicity;Foster-Lyapunov condition;functional inequality