Stochastic PDE eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretisations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. Under stronger smoothness assumptions on the parametric dependence, our analysis also extends to multilevel higher-order quasi-Monte Carlo rules. An accompanying paper [Gilbert and Scheichl, 2022], focusses on practical extensions of the MLQMC algorithm to improve efficiency, and presents numerical results.
翻译:物理科学和工程学的若干应用的不确定性,例如结构振动分析、核反应堆或光晶体结构的临界性、核反应堆或光晶体体结构的临界性等,是量化物理科学和工程学若干应用的不确定性的有用模型。本文介绍了一种多层次准蒙特卡罗(MLQMC)方法,以近似于精密分析这种算法错误的多层次准蒙特卡罗(MLQMC)方法。在错误分析中,关键步骤要求同时对作为可计算多度随机和空间参数系列扩展的系数,对电子元的混合衍生物进行界限。在对等依赖的更平稳假设下,我们的分析还扩展到了对空间域的分层分层和对蒸气参数域的分解。为了估计预期,我们采用了随机变化的拉蒂卡规则。本文主要致力于对这一算法的错误进行严格分析。一个关键步骤要求同时对电子元功能的混合衍生物进行分解,同时进行分解。在对准依赖性的假设下,我们的分析还扩展到了多层次的更高层次的准蒙性准-摩托标准规则和Sch-CL的扩展。