We target time-dependent partial differential equations (PDEs) with heterogeneous coefficients in space and time. To tackle these problems, we construct reduced basis/ multiscale ansatz functions defined in space that can be combined with time stepping schemes within model order reduction or multiscale methods. To that end, we propose to perform several simulations of the PDE for few time steps in parallel starting at different, randomly drawn start points, prescribing random initial conditions; applying a singular value decomposition to a subset of the so obtained snapshots yields the reduced basis/ multiscale ansatz functions. This facilitates constructing the reduced basis/ multiscale ansatz functions in an embarrassingly parallel manner. In detail, we suggest using a data-dependent probability distribution based on the data functions of the PDE to select the start points. Each local in time simulation of the PDE with random initial conditions approximates a local approximation space in one time point that is optimal in the sense of Kolmogorov. The derivation of these optimal local approximation spaces which are spanned by the left singular vectors of a compact transfer operator that maps arbitrary initial conditions to the solution of the PDE in a later point of time, is one other main contribution of this paper. By solving the PDE locally in time with random initial conditions, we construct local ansatz spaces in time that converge provably at a quasi-optimal rate and allow for local error control. Numerical experiments demonstrate that the proposed method can outperform existing methods like the proper orthogonal decomposition even in a sequential setting and is well capable of approximating advection-dominated problems.
翻译:我们的目标是基于时间的局部差异方程式(PDEs), 其时间和时间系数各异。 为了解决这些问题, 我们构建了空间中定义的减少基数/多比例的 ansatz 函数, 这些功能可以与模型顺序减少或多尺度方法中的时间踏步办法相结合。 为此, 我们提议从不同随机抽取的起始点开始, 将PDE的几次模拟时间步骤平行进行, 设定随机初始条件; 将单值分解到如此获取的快照中的一个子集, 得出降低基数/ 多尺度的 ansatz 函数。 这有利于以令人尴尬的平行方式构建缩小基数/ 多尺度的 ansatz 函数。 详细地说, 我们建议使用基于 PDE 数据函数的数据偏差概率分布来选择起始点。 每个局部时间模拟 PDE 初始条件, 在一个时间点上接近一个局部近似近地点的近似位置位置。 这些最佳本地近似空间的推算出, 由一个压缩传输器的左单位矢量矢量产生, 以任意的初始条件/ 多尺度, 直径直径直径计算, 直径计算出一个本地的直径直径定位, 。 度计算中, 直径地计算中, 将一个本地的缩缩缩缩缩缩缩缩缩缩缩算算出一个本地的计算方法在本地的缩缩缩缩算的计算,, 的缩缩算法的计算方法的缩缩算的缩算法的缩算法的缩到本地的缩算算法的缩算法,,,, 的缩算算法的缩算法的缩算法的缩算法的缩算法的缩算的缩算的缩算的缩算法的缩算法的缩算的缩算法的缩算法的缩法的缩算法的缩法的缩算法的缩算法的缩算的缩算法的缩算法的缩算法的缩算法的缩算的缩算法的缩算法的缩算法的缩算的缩算的缩算的缩算法的缩算的缩算法的缩算的缩算的缩算的缩算的缩算法的缩算法的缩算法的缩算法的