In this paper, we consider numerical approximations for solving the micropolar Navier-Stokes (MNS) equations, that couples the Navier-Stokes equations and the angular momentum equation together. By combining the scalar auxiliary variable (SAV) approach for the convective terms and some subtle implicit-explicit (IMEX) treatments for the coupling terms, we propose a decoupled, linear and unconditionally energy stable scheme for this system. We further derive rigorous error estimates for the velocity, pressure and angular velocity in two dimensions without any condition on the time step. Numerical examples are presented to verify the theoretical findings and show the performances of the scheme.
翻译:在本文中,我们考虑了解决微极纳维埃-斯托克斯(MNS)方程式的数值近似值,即将纳维埃-斯托克方程式和角动力方程式结合在一起。通过结合对等术语的标量辅助变量(SAV)法和对组合术语的一些微妙的隐含(IMEX)处理法,我们为这个系统提出了一个脱钩、线性且无条件的能源稳定方案。我们进一步得出了两个维度的精确误差估计,而无需在时间步骤中附加任何条件。我们提出了数字实例,以核实理论结论并展示这个方案的绩效。