In the literature on simultaneous non-cooperative games, it is a widely used fact that a positive affine (linear) transformation of the utility payoffs neither changes the best response sets nor the Nash equilibrium set. We investigate which other game transformations also possess one of these two properties when being applied to an arbitrary N-player game (N >= 2): (i) The Nash equilibrium set stays the same. (ii) The best response sets stay the same. For game transformations that operate player-wise and strategy-wise, we prove that (i) implies (ii) and that transformations with property (ii) must be positive affine. The resulting equivalence chain gives an explicit description of all those game transformations that always preserve the Nash equilibrium set (or, respectively, the best response sets). Simultaneously, we obtain two new characterizations of the class of positive affine transformations.
翻译:在同时非合作游戏的文献中,一个被广泛使用的事实是,效用支付的正仿射(线性)转换既不改变最佳响应集也不改变Nash均衡集。我们研究了应用于任意N个游戏者游戏(N >= 2)时,哪些其他游戏变换也具有其中一个性质:(i)Nash均衡集保持不变;(ii)最佳响应集保持不变。对于操作某个游戏者和某个策略的游戏变换,我们证明了(i)蕴含(ii),而具有性质(ii)的变换必须是正仿射的。所得到的等价链以显式的方式描述了那些总是保持Nash均衡集(或,分别是最佳响应集)的游戏变换。同时,我们获得了正仿射变换类的两个新特征描述。