▐ We Know What You Want: An Advertising Strategy Recommender System for Online Advertising 广告主端的“猜你喜欢”:在线广告投放策略推荐系统
摘要:广告主在电子商务平台中起着重要作用,其广告支出是电子商务平台的主要收入来源。通过减少广告实时出价过程中的试错成本为广告主提供更好的广告体验,对于电子商务平台的长期收入至关重要。为了实现这一目标,广告平台需要了解广告主的独特营销需求,并积极为其推荐个性化和最佳的广告策略。在这项工作中,我们首先在淘宝展示广告平台上部署了一个原型推荐系统,以实现广告主人群出价和人群选择的优化。然后,我们提出了一种新颖的用于动态出价策略推荐的推荐系统,该系统将广告主的策略推荐问题建模为上下文老虎机问题。我们使用神经网络,根据广告主的信息和历史采纳行为来预测广告主的需求。基于预测的需求,我们应用模拟竞价来推导用于推荐的最佳出价策略,并通过显示预估的广告效果与广告主进行交互。为了解决探索/利用问题,我们用Dropout表示网络的不确定性,以进行有效的策略探索,可以证明这种方式近似等价于汤普森采样。在线评估表明,原型推荐系统可以优化广告主的广告效果,广告主愿意打开该系统,选择并采纳建议,这也进一步增加了平台的收入。基于阿里巴巴在线竞价数据的仿真实验证明,上下文老虎机算法可以有效优化广告主的采纳率。对比实验证明汤普森采样可以更好地平衡探索和利用,进一步优化模型的性能。 论文下载:
https://www.zhuanzhi.ai/paper/aeece87eb4fe54a737b3235718ae881c